VANIR DREAM T
Suplement diety VANIR DREAM T (Płyn doustny) składający się z: Melatonina, L-Tryptofan, L-teanina, 5-HTP z ekstrakt z nasion Griffonia simplicifolia, GABA z ekstrakt z ziarna ryżu, Witamina B12, Witamina B6, Witamina B1, Biotyna, Niacyna, Witamina C. Zarejestrowano go w 2018 roku. Jego stan w rejestrze to: weryfikacja w toku. suplement diety VANIR DREAM T został wyprodukowany przez suplementu diety, oraz zgłoszony do rejestracji przez VANIR HEALTH S.L.U..
-
Informacje o suplemencie
Skład: Melatonina, L-Tryptofan, L-teanina, 5-HTP z ekstrakt z nasion Griffonia simplicifolia, GABA z ekstrakt z ziarna ryżu, Witamina B12, Witamina B6, Witamina B1, Biotyna, Niacyna, Witamina C
Forma: Płyn doustny
Kwalfikacja: s - suplement diety
Status produktu: weryfikacja w toku
Rok zgłoszenia: 2018
Producent: VANIR HEALTH S.L.U.
Rejestrujący: VANIR HEALTH S.L.U.
Dodatkowe informacje:
-
Informacje o składnikach suplementu
Uwaga! Poniższe informacje nie stanowią informacji z ulotki produktu. Są to definicje encyklopedyczne dotyczące poszczególnych składników suplementu diety, nie są one bezpośrednio powiązane z produktem. Nie mogą one zastąpić informacji z ulotki, czy też porady lekarza lub farmaceuty. Są to jedynie informacje pomocnicze.
melatonina - Melatonina – organiczny związek chemiczny, pochodna tryptofanu. U zwierząt jest hormonem syntetyzowanym głównie w szyszynce. Koordynuje pracę nadrzędnego zegara biologicznego u ssaków, regulującego rytmy dobowe, między innymi snu i czuwania. Biosynteza melatoniny zachodzi w pinealocytach. Produktem wyjściowym jest tryptofan, który dzięki działaniu hydroksylazy ulega przekształceniu w 5-hydroksytryptofan, który pod wpływem dekarboksylazy 5-hydroksytryptofanowej przekształca się w 5-hydroksytryptaminę (serotoninę). Dalsza synteza polega na N-acetylacji pod wpływem N-acetylotransferazy serotoninowej (jej aktywność podlega wahaniom dobowym) z powstaniem N-acetyloserotoniny, która ulega O-metylacji z udziałem 5-hydroksyindolo-O-metylotransferazy z wytworzeniem 5-metoksy-N-acetylotryptaminy, czyli melatoniny. Jest katabolizowana do kynuramin. Jako przykład jednej z najlepiej poznanych kynuramin Jaworek i in. podają N1-acetylo-N1-formylo-5-metoksykynuraminę (AFMK). Związki te, podobnie jak i tryptofan, przypominają właściwościami melatoninę. Wytwarzanie melatoniny pozostaje pod hamującym wpływem światła. Ekspozycja organizmu w porze snu na oświetlenie powoduje znaczne zmniejszenie syntezy i uwalniania melatoniny. Impulsy nerwowe przekazywane są drogą nerwową rozpoczynającą się w neuronach siatkówki i kończącą w przestrzeniach okołonaczyniowych w pobliżu ciała pinealocytów. Obecność receptorów melatoniny opisano już w okresie płodowym. Niemowlęta do 12 tygodnia nie mają ściśle określonego rytmu dobowego (ich organizm prawie wcale nie produkuje melatoniny, dziecko śpi kiedy jest najedzone), dopiero około 20 tygodnia pojawia się wyraźny zarys tego cyklu. Wraz ze starzeniem się organizmu dochodzi do zwapnienia szyszynki, zmniejsza to ilość zsyntezowanej melatoniny (dlatego osoby w wieku 80 i więcej lat mają problemy ze snem, często sypiają w dzień i budzą się wcześnie rano). Obecnie sprzedawana jest w postaci tabletek bez recepty jako lek (ATC N05CM17) ułatwiający zasypianie w zaburzeniach rytmu dobowego u pacjentów niewidomych oraz w zaburzeniach snu związanych ze zmianą stref czasowych (zespół nagłej zmiany strefy czasowej). Jest szybko przetwarzana w dwa metabolity: 6-hydroksymelatoninę i 6-sulfotoksymelatoninę. Melatonina ma także działanie antygonadotropowe. Zniszczenie szyszynki powoduje przedwczesne pokwitanie u dzieci. Oprócz szyszynki melatonina jest także syntetyzowana przez siatkówkę i komórki enterochromatofilne przewodu pokarmowego. W układzie pokarmowym odpowiada za spowalnianie procesów trawiennych, choć pobudza wydzielanie enzymów przez trzustkę. Poza regulowaniem rytmów dobowych melatonina ma również korzystny wpływ na układ odpornościowy. Jest też silnym przeciwutleniaczem. Przy nowotworach trzustki, podanie melatoniny lub AFMK wywołuje w komórkach nowotworowych apoptozę.
l-tryptofan - Tryptofan (nazwa skrótowa Trp) – organiczny związek chemiczny z grupy aminokwasów białkowych. Jest obojętny elektrycznie; jego łańcuch boczny oparty jest na szkielecie indolu. Wchodzi w skład białek (białka mleka, białka krwi), należy do aminokwasów niezbędnych (nie może być syntetyzowany w organizmie człowieka i musi być dostarczany z pożywieniem). Zdolność do jego syntezy mają niektóre rośliny i bakterie. Przemiany tryptofanu są źródłem istotnych związków, m.in. tryptaminy, serotoniny (w organizmie zachodzi przemiana Trp → 5-hydroksytryptofan → serotonina), melatoniny, niacyny i roślinnych hormonów wzrostu (auksyn). Rozpuszczalny w tłuszczach, gorącym alkoholu i mocnych zasadach. Tryptofan jest obok metioniny jednym z dwóch aminokwasów kodowanych zawsze tym samym kodonem – UGG.
l-teanina - Teanina – organiczny związek chemiczny z grupy α-aminokwasów niebiałkowych, pochodna glutaminy, zawierająca podstawnik etylowy przy atomie azotu w łańcuchu bocznym. Występuje naturalnie jako enancjomer o konfiguracji L w liściach herbaty zielonej (kamelii). Łatwo pokonuje barierę krew-mózg i jest związkiem psychoaktywnym. Ma działanie uspokajające, zmniejszające stres i niepokój, stabilizujące nastrój. Zwiększa intensywność fal alfa w mózgu, co poprawia wydajność pracy i skuteczność nauki. Jest nootropem.
gaba z ekstrakt z ziarna ryżu - Gatunki piw – ze względu na odmienne składniki, profil aromatyczno-smakowy, technologię produkcji czy wygląd, piwa różnią się między sobą tworząc poszczególne gatunki, style lub odmiany. W całej historii piwa liczącej sobie ponad 6 tys. lat różnicowano piwo według jego barwy, smaku, zawartości alkoholu czy użytych surowców. Jednakże do XIX wieku technologia warzenia piwa nie zmieniała się wiele. Dopiero rozwój nauki i techniki doprowadziły do znacznego rozwoju receptur i metod warzenia piwa, które coraz bardziej zaczęły się różnić. Z czasem państwa (np. Belgia), regiony (np. Bawaria), miasta (np. Pilzno) lub miejsca (np. klasztory) wykreowały charakterystyczny styl bądź gatunek piwa, łączony z miejscem jego pochodzenia. Zaczęły mnożyć się receptury, naśladowcy i modyfikacje doprowadzając do powstawania nowych gatunków czy stylów. Nowoczesne podejście do typologii zaproponował pisarz i krytyk piwny Michael Jackson, który w swojej książce The World Guide to Beer z 1977 r. dokonał próby opisu i klasyfikacji piw z całego świata. Jego pracę kontynuował Fred Eckhardt, który w 1989 r. opublikował książkę Essentials of Beer Style. Obecnie ze względu na rodzaj użytych drożdży, a co za tym idzie inną technologię produkcji, piwa dzielą się na dwie duże rodziny: Ale (czyt.: ejl); górnej fermentacji Lager; dolnej fermentacjiDo piw typu ale należą również belgijskie piwa fermentacji spontanicznej korzystające z tzw. dzikich drożdży. W ramach obu grup wyróżnia się poszczególne gatunki, style i odmiany charakteryzujące się różnymi elementami. O przynależności piwa do danego gatunku decyduje kilka czynników: rodzaj fermentacji – wyróżniamy fermentację górną i dolną. Rodzaj fermentacji zależny jest od użytych drożdży piwowarskich, które dzielą się na drożdże górnej i dolnej fermentacji. Drożdże fermentacji dolnej fermentują w niższych temperaturach, osadzają się na dnie fermentora, w większym stopniu wpływają na wydzielanie się dwutlenku węgla, powodują tym samym, że piwo jest bardziej orzeźwiające, ma czystszy i pełniejszy smak. Po fermentacji piwo leżakuje w niskich temperaturach, dojrzewa dłużej oraz posiada większą trwałość. Drożdże górnej fermentacji natomiast fermentują w wyższych temperaturach, zbierają się na powierzchni brzeczki i wydzielają większą ilość produktów ubocznych, alkoholi i estrów owocowych, co wpływa na większe bogactwo aromatyczno-smakowe. aromat – każdy gatunek piwa ma swój charakterystyczny profil aromatyczno-smakowy. Na zapach w piwie wpływ mają niemal wszystkie składniki i surowce użyte do jego produkcji (poszczególne rodzaje słodów, drożdże, chmiel, woda i inne) oraz technologia produkcji (np. rodzaj zacierania, fermentacji, sposób i długość leżakowania). smak – podobnie jak w przypadku aromatu również smak charakterystyczny dla poszczególnych gatunków piwa zależny jest zarówno od użytych surowców jak i technologii produkcji. woda – jest to główny składnik piwa, jej skład chemiczny i odczyn ph mają fundamentalny wpływ na smak i pośredni wpływ na kolor i poziom goryczki w gotowym piwie. Przykładowo piwa jasne, lekkie i orzeźwiające takie jak Pilzner są warzone na miękkiej wodzie, natomiast piwa ciemne (np. Stout, Porter) na wodzie twardszej, bardziej zmineralizowanej. słód – jest to podstawowy składnik piwa mający ogromny wpływ na profil aromatyczno-smakowy danego gatunku. Użycie danego rodzaju słodu lub słodów (jęczmienne, pszeniczne, żytnie, palone, wędzone, karmelowe) w odpowiedniej ilości decyduje w znacznym stopniu o charakterze piwa. Na charakter piwa wpływa również sam proces produkcji słodu (słodowanie), następnie jego zacieranie, czas trwania oraz temperatura w jakiej zacieranie się odbywa. W zależności od odmiany piwa można użyć jednego lub kilku rodzajów słodów. chmiel – używany jest do piwa głównie jako przyprawa. Ilość i rodzaj użytego chmielu jest częścią harmonii smakowej danego gatunku piwa. Silnie chmielone piwo zawiera mocne, aromatyczne, ziołowo-goryczkowe tony, natomiast mniejsza ilość chmielu może bardziej uwypuklać walory słodu np. jego słodycz. ekstrakt brzeczki nastawnej – czyli wodny wyciąg ze słodów (głównie cukry), który po dodaniu drożdży poddawany jest fermentacji. W przypadku typologii piw podstawową informacją jest ilość ekstraktu, z jakiej powstało piwo. Użycie danej ilości ekstraktu wpływa na treściwość piwa (lekkie, ciężkie), siłę profilu aromatyczno-smakowego, barwę piwa oraz zawartość alkoholu. Ekstrakt w gotowym produkcie podawany jest w procentach wagowych (% e.w.), stopniach Ballinga (°Blg) lub stopniach Plato (°P). Wszystkie trzy wartości są niemal identyczne. zawartość alkoholu – wyrażana jest w procentach objętości. Odpowiednia ilość alkoholu stanowi również o charakterze danego piwa i jego przynależności gatunkowej. Mniejsza zawartość alkoholu powoduje, że piwa są lżejsze, bardziej rześkie i lepiej gaszą pragnienie, mają wyższą pijalność (sesyjność). Mocniejsze piwa natomiast są bardziej rozgrzewające, likierowe i cięższe. Wyróżnia się piwa bezalkoholowe, lekkie, pełne, mocne i bardzo mocne. Moc piwa nie jest miarą jego jakości. Zawartość alkoholu związana jest z procesem fermentacji. Im głębiej przeprowadzona jest fermentacja, tym uzyskuje się większą zawartość alkoholu. goryczka – osiągana jest w piwie głównie dzięki chmielowi i użytej wodzie. Mogą ja również podnieść specjalne słody (palone). Siła goryczki, jej jakość, intensywność i harmonia z innymi składnikami jest jednym z elementów wyróżniających dane gatunki. Przykładowo pilznery mają wyższą zawartość goryczki od lagerów, które z kolei charakteryzują się dominacją smaków słodowych (słodycz, chlebowość, zbożowość). Poziom goryczki w piwie mierzony jest w stopniach IBU (International Bittering Units) opracowanych przez European Brewery Convention. barwa – ze względu na barwę wyróżniamy piwa jasne i ciemne ze wszelkimi ich tonacjami np. słomkowo-żółte, ciemno-bursztynowe itp. Na barwę piwa wpływa przede wszystkim rodzaj użytych słodów (jasne pilzneńskie, ciemne palone, barwiące i.in.) oraz dodatki niesłodowane np. kukurydza, ryż. Kolor piwa podaje się w jednostkach EBC. piana – jest jednym z dodatkowych elementów świadczących o jakości piwa. W zależności od gatunku poszczególne piwa może cechować piana bardziej lub mniej obfita, gęsta i trwała. nasycenie – powstaje w wyniku fermentacji brzeczki. Docelowe nasycenie w butelkach i kegach osiągane jest sztucznie przez dodanie dwutlenku węgla, bądź naturalnie poprzez refermentację w docelowym naczyniu. Piwa mogą mieć wysokie, średnie lub niskie nasycenie dwutlenkiem węgla zależne od danego gatunku piwa. składniki dodatkowe – również wpływają na charakter poszczególnego gatunku piwa. Dodatek surowców niesłodowanych, miodu, różnych owoców, przypraw czy warzyw wpływa znacząco na profil aromatyczno-smakowy piwa.
witamina b12 - Witamina B12, kobalamina – organiczny związek chemiczny zawierający kobalt jako atom centralny. W organizmach żywych pełni rolę regulatora produkcji erytrocytów (czerwonych ciałek krwi). Jego niedobór powoduje niedokrwistość. Zaliczany jest do witamin z grupy B, tj. rozpuszczalnych w wodzie prekursorów koenzymów.
witamina b6 - Witamina B6 (ATC: A 11 HA 02) – grupa 6 organicznych związków chemicznych, pochodnych pirydyny: pirydoksyny, pirydoksalu i pirydoksaminy oraz ich 5'-fosforanów. Formą aktywną biologicznie jest fosforan pirydoksalu, do którego pozostałe formy są przekształcane enzymatycznie, w wyniku działania kinaz i oksydaz. Niektóre formy witaminy B6 Jest to witamina z grupy B, rozpuszcza się w wodzie i jest prekursorem ważnych koenzymów, które kontrolują przebieg wielu kluczowych reakcji biochemicznych. Stosowanie izoniazydu jest najczęstszą przyczyną niedoboru tej witaminy.
witamina b1 - Witamina B1 (tiamina) – heterocykliczny związek chemiczny, złożony z pierścieni tiazolowego i pirymidynowego, połączonych mostkiem metinowym. Tiaminę wyodrębnił w 1911 roku z otrębów ryżowych Kazimierz Funk. On też zaproponował dla niej i podobnych jej, niezbędnych ludziom do życia, substancji nazwę witamina (związek jest aminą, a Funk zakładał, że podobnych substancji jest więcej (słusznie) i wszystkie są aminami (błędnie)). Wyniki badań i swoje wnioski opublikował początkowo, wskutek niechęci przełożonych, w artykułach przeglądowych On the chemical nature of the substance which cures polyneuritis in birds induced by a diet of polished rice oraz The etiology of the deficiency diseases. Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra.
biotyna - Biotyna (gr. bios – życie), witamina H, witamina B7 – heterocykliczny organiczny związek chemiczny z grupy rozpuszczalnych w wodzie witamin B. Zawiera układ skondensowanych pierścieni imidazolidynowego oraz tiolanowego z łańcuchem alkilowym zakończonym grupą karboksylową. Występuje w organizmach zwierzęcych i roślinnych. Stanowi ona koenzym kilku różnych enzymów. Jest niezbędnym składnikiem karboksylaz biotynozależnych. Uczestniczy w przenoszeniu grupy karboksylowej (–COO−) z anionu wodorowęglanu na różne związki organiczne, zależnie od rodzaju danej karboksylazy. Antywitaminami biotyny są destiobiotyna, dehydrobiotyna, homobiotyna i norbiotyna.
niacyna - Witamina B3 (witamina PP) – wspólna nazwa na określenie dwóch związków: kwasu nikotynowego (niacyny, czyli kwasu 3-pirydynokarboksylowego, pochodnej pirydyny) i jego amidu (nikotynamidu), które dla człowieka są witaminą. Witamina B3 Niacyna jest znana również jako czynnik przeciwpelagryczny, stąd niekiedy nazywa się ją również witaminą PP. Może być ona, w przeciwieństwie do innych witamin z grupy B, produkowana w organizmie z podstawowego aminokwasu, tryptofanu. Są to jednak niewielkie ilości i jej najważniejszym źródłem powinno być pożywienie. Należy również pamiętać, że tryptofan należy do aminokwasów egzogennych, czyli takich, które nie mogą być syntetyzowane w organizmie, lecz muszą zostać dostarczone w pożywieniu.
kwas askorbinowy - Kwas askorbinowy, witamina C, E300 (łac. acidum ascorbicum) – organiczny związek chemiczny z grupy nienasyconych alkoholi polihydroksylowych. Jest niezbędny do funkcjonowania organizmów żywych. Dla niektórych zwierząt, w tym ludzi, jest witaminą, czyli musi być dostarczany w pożywieniu. Jest także przeciwutleniaczem stosowanym jako dodatek do żywności.
(źródło informacji o składnikach: Wikipedia)
{{ reviewsOverall }} / 5 Ocena użytkowników (0 głosy)Cena0Skuteczność0Działania uboczne0